q^2+36=100

Simple and best practice solution for q^2+36=100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for q^2+36=100 equation:



q^2+36=100
We move all terms to the left:
q^2+36-(100)=0
We add all the numbers together, and all the variables
q^2-64=0
a = 1; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·1·(-64)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{256}=16$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16}{2*1}=\frac{-16}{2} =-8 $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16}{2*1}=\frac{16}{2} =8 $

See similar equations:

| -7x-1=-x | | (x+13)+79=360-224 | | 2(3x–5)=3(2x+4) | | (3x+17)+18=7x-5 | | y′′+4y+4=0 | | 10+25x=5 | | 4x+4(-1)=-28 | | 63=-3x=10x | | 11x=179 | | (2x+5)=(3x-21) | | Y=8x+3;(1,15) | | (X+3)+11=5x-2 | | 32+x=64 | | 10,500=1,500x | | 0.8(x)-4=0.3(x)+7 | | (20÷n)+5=9 | | 5m+7=77 | | 7x-8x(-x+7)=-16+7x | | (5w+w)(5w+1)=0 | | 5x-4=-5x-6 | | 7x-8x(-x+7)=-16+7 | | -2|3x+1|=-6 | | x(.1482)+x=137.78 | | 2x+8+x+8=180 | | 14x-14=-64-5x | | (3x+1)=26 | | 60+x+110=180 | | (X+1)+3x=5 | | 10(-6x-16)=140 | | -51+4x=10x+11 | | -4=x/(-8-1) | | -7x-8x(-x+7)=-16+7x |

Equations solver categories